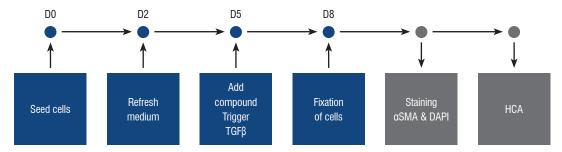


Overview

Fibrosis results from misregulated complex pathways involving multiple cell types such as epithelial cells and fibroblasts.

We've developed an optimized, off-the-shelf panel of *in vitro* fibrosis assays using our own patient-derived donor cells to assess the translational potential of small molecules as novel therapies.

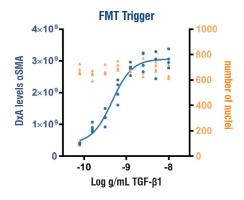

Complex Biology *In Vitro* Assays: Fibrosis Fibroblast-to-Myofibroblast Transition (FMT) Assay

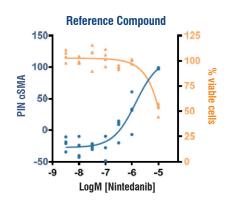
Fibroblast-to-Myofibroblast Transition (FMT) Assay in Human Lung Cells Derived from Idiopathic Pulmonary Fibrosis (IPF) Patients and Healthy Donors

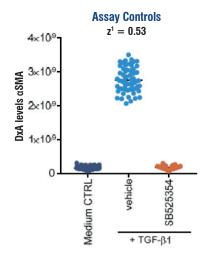
A well-characterized hallmark of pathologic FMT is *de novo* formation of alpha-smooth muscle actin (α SMA) stress fibers. Since myofibroblasts localize at sites undergoing active matrix deposition and display elevated collagen synthetic capacity, myofibroblasts are considered to play a major role in the pathology of idiopathic pulmonary fibrosis (IPF). The well-established key fibrogenic mediator, transforming growth factor TGF- β 1, induces FMT. In cells that have undergone FMT, increased expression of α SMA is observed. *In vitro*, increased α SMA expression positively correlates with contraction of myofibroblast populated collagen gels, indicating that α SMA is a strong marker of myofibroblast differentiation and hence, a relevant readout for lung fibrosis. A validated, robust TGF- β 1-induced FMT assay has been developed in IPF-derived fibroblasts to evaluate therapeutic candidates with various modes-of-action in this disease area.

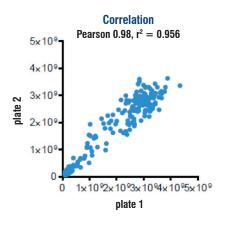
FTM Assay Principle

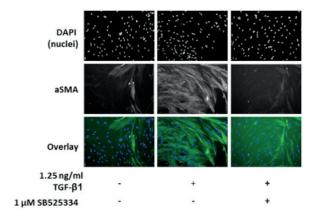
Patient-derived primary human bronchial fibroblasts cells are seeded then refreshed in preparation for addition of small molecule compounds and the TGF- β 1 trigger. After 3 days, the cells are fixed, then stained using DAPI-labeled α SMA and imaged via HCA.


FTM Assay Setup


FTM protocol has been developed for optimum analysis of trans-differentiation of fibroblasts to myofibroblasts. Marker expression is quantified using in-house developed algorithms.


- Cells → lung fibroblasts from IPF donors or 3 healthy donors
- Seeding density → 3,000 cells/well in 96-well plates
- Trigger \rightarrow 1.25 ng/mL TGF- β 1
- Assay controls \rightarrow 0.1% DMSO (negative control) and 1 μ M SB525334 (positive control)
- Compounds → 8-point concentration response curves (in biological duplicate)
- Fix → 72 hours post-trigger
- Readout → αSMA and DAPI staining (high-content analysis)


Assay Performance


Representative dose response data shown below from patient-derived donor, 72 hours post TGF-β1 trigger.

Summary

Lung-derived fibroblasts stimulated with $TGF\beta1$ demonstrated a clear dose-dependent increase in αSMA levels, while increasing the $TGF\beta1$ stimuli showed no effect of on the number of nuclei, indicative of no cytotoxic events. $TGF\beta1$ trigger could be inhibited by treatment with an ALK-5, showing full inhibition of αSMA regardless of the presence of $TGF\beta1$. IC50 values were consistent between donor samples, and strong Pearson correlation denotes consistency between biological replicates. Using these fibrosis assays, trans-differentiation FMT can be monitored to evaluate therapeutic candidates.

The therapeutic candidates can be evaluated in 8-step CRC for their effect on α SMA modulation. In addition, potential cytotoxic side-effects of the tested therapeutic candidate will be assessed by monitoring the loss of nuclei as a measure for cell death. Results will be provided as percentage inhibition (PIN values) and % viable cells.

For our clients' scheduling convenience, we perform FMT assays on a routine bi-monthly basis. Results are issued within 4-6 weeks of receipt due date.

FMT Assay – Compound Receipt Due Date

JAN	March	May	July	September	November
10	7	9	11	5	7

Assay Reference codes

Fibroblast-to-Myofibroblast Transition (FMT) Assay – IPF Human-Derived Donor Cells

Assay reference code: OTS101-FMT-LUNG-IPF

Fibroblast-to-Myofibroblast Transition (FMT) Assay – Healthy Human-Derived Donor Cells

Assay reference code: OTS102-FMT-LUNG-HEALTHY

